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ABSTRACT. We introduce and study the notion of the G-Tutte polynomial for a list A of elements in
a finitely generated abelian group Γ and an abelian group G, which is defined by counting the number
of homomorphisms from associated finite abelian groups to G. The G-Tutte polynomial is a common
generalization of the (arithmetic) Tutte polynomial for realizable (arithmetic) matroids, the characteristic
quasi-polynomial for integral arrangements, Brändén-Moci’s arithmetic version of the partition function of
an abelian group-valued Potts model, and the modified Tutte-Krushkal-Renhardy polynomial for a finite
CW-complex. As in the classical case, G-Tutte polynomials carry topological and enumerative information
(e.g., the Euler characteristic, point counting and the Poincaré polynomial) of abelian Lie group arrange-
ments. We also discuss differences between the arithmetic Tutte and the G-Tutte polynomials related to the
axioms for arithmetic matroids and the (non-)positivity of coefficients.

1. INTRODUCTION

The Tutte polynomial is one of the most important invariants of a graph. The significance of the Tutte
polynomial is that it has several important specializations, including chromatic polynomials, partition
functions of Potts models ([28]), and Jones polynomials for alternating links ([30]). Another noteworthy
aspect of the Tutte polynomial is that it depends only on the (graphical) matroid structure, and thus one
can define the Tutte polynomial for a matroid. Matroids and (specializations of) Tutte polynomials play
a role in several diverse areas of mathematics ([27, 31]).

Matroids and Tutte polynomials are particularly important in the study of hyperplane arrangements
([26]), because the Tutte polynomial and one of its specializations, the characteristic polynomial, carry
enumerative and topological information about the arrangement. For instance, the number of points
over a finite field, the number of chambers for a real arrangement and the Betti numbers for a complex
arrangement are all obtained from the characteristic polynomial.

In the context of hyperplane arrangements, matroids are considered to be the data that encode the
pattern of intersecting hyperplanes. It should be noted that the isomorphism class of a subspace is
determined by its dimension (or codimension), or equivalently, by the rank function in matroid theory.
This is the reason that matroids are extremely powerful in the study of hyperplane arrangements.

It is natural to consider arrangements of subsets of other types. There have been many attempts to
consider arrangements of submanifolds inside a manifold. Recently, arrangements of subtori in a torus,
or so-called toric arrangements, have received considerable attention ([12]), which has origin in the study
of the moduli space of curves ([23]) and regular semisimple elements in an algebraic group ([21]).

However, beyond linear subspaces, the notion of rank is no longer sufficient to determine the isomor-
phism class of intersections of an arrangement. We need additional structure to describe intersection
patterns combinatorially.

The notions of arithmetic Tutte polynomials and arithmetic matroids invented by Moci and collabora-
tors ([24, 11, 8, 15]) are particularly useful for studying toric arrangements. As in the case of hyperplane
arrangements, arithmetic Tutte polynomials carry enumerative and topological information about toric
arrangements. It is generally difficult to explicitly compute the arithmetic Tutte polynomial. Arithmetic
Tutte polynomials for classical root systems were computed by Ardila, Castillo and Henley ([1]).
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Another (quasi-)polynomial invariant for a hyperplane arrangement defined over integers, the charac-
teristic quasi-polynomial introduced by Kamiya, Takemura and Terao [18], is a refinement of the char-
acteristic polynomial of an arrangement. The notion of the characteristic quasi-polynomial is closely
related to Ehrhart theory on counting lattice points, and has increased in combinatorial importance re-
cently. The characteristic quasi-polynomial for root systems was essentially computed by Suter [29] (see
also [19]). By comparing the computations of Suter with those of Ardila, Castillo and Henley, it has
been observed that the last constituent of the characteristic quasi-polynomial is a specialization of the
arithmetic Tutte polynomial.

The purpose of this paper is to introduce and study a new class of polynomial invariant that forms
a common generalization of the Tutte, arithmetic Tutte and characteristic quasi-polynomials, among
others. The key observation to unify the above “Tutte-like polynomials” is that they are all defined by
means of counting homomorphisms between certain abelian groups (this formulation appeared in [8,
§7]). This observation has prompted us to introduce the notion of the G-Tutte polynomial TGA (x, y) for a
list of elementsA in a finitely generated abelian group Γ and an abelian groupG with a certain finiteness
assumption on the torsion elements (see §3.2 for details). We mainly consider abelian Lie groups G of
the form

G = F × (S1)p × Rq,

where F is a finite abelian group and p, q ≥ 0. When the group G is C, C×, or the finite cyclic group
Z/kZ, the G-Tutte polynomial is precisely the Tutte polynomial, the arithmetic Tutte polynomial, or a
constituent of the characteristic quasi-polynomial, respectively. We will see that many known properties
(deletion-contraction formula, Euler characteristic of the complement, point counting, Poincaré polyno-
mial, convolution formula) for (arithmetic) Tutte polynomials are shared by G-Tutte polynomials. (See
[14] for another attempt to generalize arithmetic Tutte polynomials.)

The organization of this paper is as follows.
§2 gives a summary of background material. We recall definitions of the Tutte polynomial TA(x, y),

arithmetic Tutte polynomial T arith
A (x, y) and the characteristic quasi-polynomial χquasi

A (q) for a given
list of elements A in Γ = Z`.

In §3, we study the problem from an algebraic combinatorial approach, which is a source of our
main motivation. We define arrangements A(G) of subgroups in Hom(Γ, G) and its complements
M(A; Γ, G) for arbitrary abelian group G. We see that the set-theoretic deletion-contraction formula
holds. In §3.2, the G-Tutte polynomial TGA (x, y) is defined using the number of homomorphisms of
certain finite abelian groups to G (the G-multiplicities). If G = S1 or C×, then the G-multiplicities
satisfy the five axioms of arithmetic matroids given in [11]. A natural question to ask is whether the
G-multiplicities satisfy these axioms for general groups G. In §3.4, we show that four of the five axioms
are satisfied by the G-multiplicities. We also prove that the G-multiplicity function satisfies another im-
portant formula, the so-called convolution formula, which has been a formula of interest recently [3, 13].
§4 contains an application of the G-Tutte polynomials via algebraic topology where we prove a for-

mula that expresses the Poincaré polynomial of M(A; Γ, G) in terms of G-characteristic polynomials
under the assumption that G is a non-compact abelian Lie group with finitely many connected compo-
nents. This formula covers several classical results, including hyperplane arrangements (Orlik-Solomon
[25] and Zaslavsky [34]), subspace arrangements (Goresky-MacPherson [16], Björner [6]) and toric ar-
rangements (De Concini-Procesi [12], Moci [24]).

In §5, we will be concerned with an enumerative point counting problem. We show that the Euler
characteristic e(M(A; Γ, G)) of the complement can be computed as a special value of the G-Tutte
polynomial (or G-characteristic polynomial) when G is an abelian Lie group with finitely many compo-
nents. As a special case, when G is finite, we obtain a formula that counts the cardinality #M(A; Γ, G).
The equality between the arithmetic characteristic polynomial and the last constituent of the characteris-
tic quasi-polynomial is also proved. In §5.3 we compute the Poincaré polynomial for toric arrangements
associated with root systems (considering positive roots to be a list in the root lattice).

This report is an extended abstract of the preprint [22], to which the interested reader is suggested to
refer for many details and for all the proofs, which are omitted here.
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2. BACKGROUND

2.1. (Arithmetic) Tutte polynomials. Let A = {α1, . . . , αn} ⊂ Z` be a list of integer vectors, let
αi = (ai1, . . . , ai`). We may consider αi to be a linear form defined by

αi(x1, . . . , x`) = ai1x1 + · · ·+ ai`x`.

A sublist S ⊂ A determines a homomorphism αS : Z` −→ Z#S . Let G be an abelian group. Define

Hαi,G := Ker(αi ⊗G : G` −→ G) ≤ G`.

The list A determines an arrangement A(G) = {Hα,G | α ∈ A} of subgroups in G`. Denote their
complement by

M(A;Z`, G) := G` r
⋃
αi∈A

Hαi,G.

The arrangement A(G) of subgroups and its complementM(A;Z`, G) are important objects of study
in many contexts. We list some of them below.

(i) When G is the additive group of a field (e.g., G = C,R,Fq), A(G) is the associated hyperplane
arrangement ([26]).

(ii) When G = Rc with c > 0, A(G) is called the c-plexification of A (see [6, §5.2]).
(iii) When G is C× or S1, A(G) is called a toric arrangement.
(iv) When G = S1×S1 (viewed as an elliptic curve),A(G) is called an elliptic (or abelian) arrange-

ment. ([5]).
(v) When G is a finite cyclic group Z/qZ, A(G) is related to the characteristic quasi-polynomial

studied in [18, 19] (see 2.2). There is also an important connection with Ehrhart theory and
enumerative problems ([7, 32, 33]).

To define the arithmetic Tutte polynomial, we need further notation. The linear map αS is expressed by
the matrix MS = (aij)i∈S,1≤j≤` of size #S × `. Denote by rS the rank of MS . Suppose that dS,i with
1 ≤ i ≤ rS , 0 < dS,i divides dS,i+1 are the invariant factors of MS . The Tutte polynomial TA(x, y) and
the arithmetic Tutte polynomial T arith

A (x, y) of A are defined as follows ([24, 8]).

TA(x, y) =
∑
S⊂A

(x− 1)rA−rS (y − 1)#S−rS ,

T arith
A (x, y) =

∑
S⊂A

m(S)(x− 1)rA−rS (y − 1)#S−rS ,

where m(S) =
∏rS
i=1 dS,i.

These polynomials encode combinatorial and topological information about the arrangements. For
instance, the characteristic polynomial of the ranked poset of flats of the hyperplane arrangement is
χA(t) = (−1)rAt`−rATA(1− t, 0), and the Poincaré polynomial ofM(A;Z`,Rc) is ([16, 6])

(2.1) PM(A;Z`,Rc)(t) = trA·(c−1) · TA
(

1 + t

tc−1
, 0

)
.

Note that the special cases c = 1 and c = 2 reduce to the famous formulas given by Zaslavsky [34]
and Orlik-Solomon [25], respectively. Similarly, as proved by De Concini-Procesi [12] and Moci [24],
the characteristic polynomial of the layers (connected components of intersections) of the correspond-
ing toric arrangement is χarith

A (t) = (−1)rAt`−rAT arith
A (1 − t, 0), and the Poincaré polynomial of

M(A;Z`,C×) is

(2.2) PM(A;Z`,C×)(t) = (1 + t)`−rA · trA · T arith
A

(
1 + 2t

t
, 0

)
.

The cohomology ring structure ofM(A;Z`,C×) was recently described by Callegaro-Delucchi [9].
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2.2. Characteristic quasi-polynomials. Kamiya, Takemura and Terao [18] proved that #M(A;Z`,Z/qZ)

is a quasi-polynomial in q (q ∈ Z>0), denoted by χquasi
A (q), with period

ρA := lcm(dS,rS | S ⊂ A).

More precisely, there exist polynomials f1(t), f2(t), · · · , fρA(t) ∈ Z[t] such that for any positive integer
q,

χquasi
A (q) := #M(A;Z`,Z/qZ) = fk(q),

where k ≡ q mod ρA. The polynomial fk(t) is called the k-constituent. They also proved that fk(t) =
fm(t) if gcd(k, ρA) = gcd(m, ρA). Furthermore, the 1-constituent f1(t) (and more generally, fk(t) with
gcd(k, ρA) = 1) is known to be equal to the characteristic polynomial χA(t) ([2]).

We will show that the most degenerate constituent fρA(t) is obtained as a specialization of the arith-
metic Tutte polynomial, and that the other constituents can also be described in terms of the G-Tutte
polynomials introduced later (Theorem 5.3, Corollary 5.4).

3. ALGEBRAIC COMBINATORICS

Throughout the paper, the term list refers to synonym of multiset. Let Γ be a finitely generated abelian
group, A ⊂ Γ a list of finitely many elements, and G an arbitrary abelian group.

3.1. Arrangements over abelian groups. Let us denote the subgroup of torsion elements of Γ by
Γtor ⊂ Γ, and the rank of Γ by rΓ. More generally, for a sublist S ⊂ Γ, denote the rank of the subgroup
〈S〉 ⊂ Γ generated by S by

rS = rank〈S〉.
We now define the “arrangement” associated with a listA over an arbitrary abelian groupG. The total

space is the abelian group

Hom(Γ, G) = {ϕ : Γ −→ G | ϕ is a homomorphism}

of all homomorphisms from Γ to G. For each α ∈ Γ, define

Hα,G := {ϕ ∈ Hom(Γ, G) | ϕ(α) = 0}.

The collection of subgroups A(G) = {Hα,G | α ∈ A} is called the G-plexification of A. Denote the
complement of A(G) by

M(A; Γ, G) := Hom(Γ, G) r
⋃
α∈A

Hα,G.

Fix α ∈ A. DenoteA′ := Ar {α} as a list of elements in the same group Γ′ := Γ. Set Γ′′ := Γ/〈α〉,
and A′′ := A/{α} = {α′ | α′ ∈ A′} ⊆ Γ′′, the contraction of A to {α}. The group Hom(Γ′′, G) can be
identified with

Hα,G = {ϕ ∈ Hom(Γ, G) | ϕ(α) = 0}.

Proposition 3.1 (Deletion-Contraction formula).

M(A′; Γ′, G) =M(A; Γ, G) tM(A′′; Γ′′, G).

3.2. G-Tutte polynomials.

Definition 3.2. An abelian group G is said to be torsion-wise finite if the subgroup of d-torsion points
G[d] := {x ∈ G | d · x = 0} is finite for all d ∈ Z>0.

Convention: In the remaining of this paper, we assume that G is always a torsion-wise finite group.

Definition 3.3. The G-multiplicity m(S;G) ∈ Z>0 for each S ⊆ Γ is defined by

m(S;G) := # Hom ((Γ/〈S〉)tor, G) .

Definition 3.4.
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(1) The multivariate G-Tutte polynomial ZGA(q,v) of A is defined by

ZGA(q,v) = ZGA(q, v1, . . . , vn) :=
∑
S⊆A

m(S;G)q−rS
∏
αi∈S

vi.

(2) The G-Tutte polynomial TGA (x, y) of A is defined by

TGA (x, y) :=
∑
S⊆A

m(S;G)(x− 1)rA−rS (y − 1)#S−rS .

(3) The G-characteristic polynomial χGA(t) of A is defined by

χGA(t) :=
∑
S⊆A

(−1)#Sm(S;G) · trΓ−rS .

These three polynomials are related by the following formulas:

TGA (x, y) = (x− 1)rA · ZGA((x− 1)(y − 1), y − 1, . . . , y − 1),

χGA(t) = (−1)rA · trΓ−rA · TGA (1− t, 0).

Recall that α ∈ A is called a loop (resp. coloop) if α ∈ Γtor (resp. rA = rAr{α} + 1). An element α
that is neither a loop nor a coloop is called proper ([11, §4.4]).

Lemma 3.5. Let (A,A′,A′′) be the triple associated with αi ∈ A. Then

ZGA(q,v) =

{
ZGA′(q,v) + vi · ZGA′′(q,v), if αi is a loop,
ZGA′(q,v) + vi · q−1 · ZGA′′(q,v), otherwise.

Corollary 3.6. The G-Tutte polynomials satisfy

TGA (x, y) =

 TGA′(x, y) + (y − 1)TGA′′(x, y), if αi is a loop,
(x− 1)TGA′(x, y) + TGA′′(x, y), if αi is a coloop,
TGA′(x, y) + TGA′′(x, y), if αi is proper.

Corollary 3.7. The G-characteristic polynomials satisfy

χGA(t) = χGA′(t)− χGA′′(t).

3.3. Specializations. The G-Tutte polynomial has several specializations. We choose to mention some
of important ones.

Proposition 3.8. Let A be a list in the free abelian group Γ = Z`.
(1) Suppose that G is a torsion-free abelian group. Then TGA (x, y) = TA(x, y) and χGA(t) = χA(t).
(2) Suppose G = S1 or C×. Then TGA (x, y) = T arith

A (x, y) and χGA(t) = χarith
A (t).

The arithmetic Tutte polynomial can also be obtained as another specialization of the G-Tutte poly-
nomial. Suppose that (Γ/〈S〉)tor '

⊕kS
i=1 Z/dS,iZ, where kS ≥ 0 and dS,i|dS,i+1. Define ρA by

ρA := lcm(dS,kS | S ⊂ A).

Proposition 3.9. TZ/ρAZ
A (x, y) = T arith

A (x, y).

3.4. Relationship with arithmetic matroids.

Theorem 3.10. TheG-multiplicities satisfy the following four properties (we borrow the numbering from
[11, §2.3]).

(1) If S ⊂ A and α ∈ A satisfy rS∪{α} = rS , then m(S ∪ {α};G) divides m(S;G).
(2) If S ⊂ A and α ∈ A satisfy rS∪{α} = rS + 1, then m(S;G) divides m(S ∪ {α};G).
(4) If S ⊂ T ⊂ A and rS = rT , then

ρT (S;G) :=
∑
S⊂B⊂T

(−1)#B−#Sm(B;G) ≥ 0.
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(5) If S ⊂ T ⊂ A and rT = rS + #(T r S), then

ρ∗T (S;G) :=
∑
S⊂B⊂T

(−1)#T −#Bm(B;G) ≥ 0.

Additionally, if G is a (torsion-wise finite) divisible abelian group, that is, the multiplication-by-k map
k : G −→ G is surjective for any positive integer k, then the G-multiplicities satisfy the following.

(3) If S ⊂ T ⊂ A and T is a disjoint union T = S t B t C such that for all S ⊂ R ⊂ T , we have
rR = rS + #(R∩ B), then

m(S;G) ·m(T ;G) = m(S t B;G) ·m(S t C;G).

Theorem 3.11. LetG be a torsion-wise finite divisible abelian group. Then the coefficients of theG-Tutte
polynomial TGA (x, y) are positive integers.

Theorem 3.12 (Convolution formula). Let A ⊂ Γ be a list in a finitely generated group Γ, and let G1

and G2 be torsion-wise finite groups. Then

TG1×G2
A (x, y) =

∑
B⊂A

TG1
B (0, y) · TG2

A/B(x, 0).

4. ALGEBRAIC TOPOLOGY

4.1. Torus cycles. We introduce a special class of homology cycles inH∗(M(A; Γ, G),Z), called torus
cycles, which are lifts of cycles in a compact torus. Let G = F × (S1)p × Rq, where F a finite abelian
group. Write Gc = F × (S1)p (compact part) and V = Rq (non-compact part). Let Γ be a finitely
generated abelian group. Fix a decomposition Γ = Γtor ⊕ Γfree, where Γfree ' ZrΓ . Then

(4.1) Hom(Γ, G) ' Hom(Γ, Gc)×Hom(Γfree, V ).

(Note that Hom(Γtor, V ) = 0). We can decompose this further as follows:

(4.2) Hom(Γ, G) ' Hom(Γtor, Gc)×Hom(Γfree, Gc)×Hom(Γfree, V ).

Let α = (β, η) ∈ Γtor ⊕ Γfree. According to decomposition (4.1),

Hα,G = Hα,Gc ×Hη,V ,

where Hα,Gc ⊂ Hom(Γ, Gc) and Hη,V ⊂ Hom(Γfree, V ). If α ∈ Γtor, or equivalently α = (β, 0), then
using (4.2) gives

Hα,G = Hβ,Gc ×Hom(Γfree, Gc)×Hom(Γfree, V ),

where Hβ,Gc is a subgroup of the finite abelian group Hom(Γtor, Gc). In this case, Hα,G is a collection
of connected components of Hom(Γ, G). If A ⊂ Γtor ⊂ Γ, then

(4.3) M(A; Γ, G) =M(A; Γtor, Gc)×Hom(Γfree, Gc)×Hom(Γfree, V ).

Therefore,M(A; Γ, G) is also a collection of some of connected components of Hom(Γ, G).
Let A ⊂ Γ be a list of elements. Define Ator := A ∩ Γtor. Consider the following diagram:

(4.4)

M(A; Γ, G)
⊂−−−−→ M(Ator; Γ, G)

⊂−−−−→ Hom(Γ, G) 3 (f, t, v)y yπ
M(Ator; Γ, Gc)

⊂−−−−→ Hom(Γ, Gc) 3 (f, t),

where π : Hom(Γ, G) −→ Hom(Γ, Gc) is the projection defined by π(f, t, v) = (f, t) for (f, t, v) ∈
Hom(Γtor, Gc)×Hom(Γfree, Gc)×Hom(Γfree, V ) ' Hom(Γ, G).

Now assume that q > 0. The fiber of the projection π is isomorphic to Hom(Γ, V ) ' V rΓ ' Rq·rΓ .
Hence

M(ArAtor; Γ, V ) = Hom(Γ, V ) r
⋃

α∈ArAtor

Hα,V
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is non-empty. Fix an element v0 ∈ M(A r Ator; Γ, V ). For a given (f, t) ∈ Hom(Γ, Gc), define
iv0(f, t) := (f, t, v0). This induces a map

iv0 :M(Ator; Γ, Gc) −→M(A; Γ, G),

which is a section of the projection π|M(A;Γ,G) :M(A; Γ, G) −→M(Ator; Γ, Gc) in (4.4).

Definition 4.1. Assume that q > 0. A cycle γ ∈ H∗(M(A; Γ, G),Z) is said to be a torus cycle if there
exist a connected component T ⊂ M(Ator; Γ, Gc), a cycle γ̃ ∈ H∗(T,Z) ⊂ H∗(M(Ator; Γ, Gc),Z)
and v0 ∈M(ArAtor; Γ, V ) such that

γ = (iv0)∗(γ̃).

The subgroup of H∗(M(A; Γ, G),Z) generated by torus cycles is denoted by Htorus
∗ (A(G)).

4.2. Meridian cycles. The torus cycles introduced in the previous section are not enough to generate
the homology group H∗(M(A; Γ, G),Z). We also need to consider meridians of Hα,G to generate
H∗(M(A; Γ, G),Z). Let us first recall the notion of layers. A layer of A(G) is a connected component
of a non-empty intersection of elements of A(G). Let S ⊂ A. Every connected component of HS,G :=⋂
α∈S Hα,G is isomorphic to

(
(S1)p × Rq

)rΓ−rS . We sometimes call the number rS the rank of the
layer. Since H∅,G = Hom(Γ, G), a connected component of Hom(Γ, G) is a layer of rank 0. Similarly,
a connected component of Hα,G for α ∈ ArAtor is a layer of rank 1.

Let L be a layer. Denote the set of α such that Hα,G contains L by AL := {α ∈ A | L ⊂ Hα,G}, and
the contraction by AL := A/AL. Note that L can be considered to be a rank 0 layer of AL(G). Define

ML(A) :=Lr
⋃

Hα,G 6⊃L
Hα,G

=L ∩M(AL; Γ/〈AL〉, G).

Let L1 ⊂ Hom(Γ, G) be a rank 1 layer of A(G), and let L0 be the rank 0 layer that contains L1. We
wish to define the meridian homomorphism

µεL0/L1
: H∗(ML1(A),Z) −→ H∗+ε·(g−1)(ML0(A),Z),

where g = dimG = p+ q > 0 and ε ∈ {0, 1}.
Since the normal bundle of L1 in L0 is trivial, there is a tubular neighborhood U of ML1(A) in

L0 such that U ' ML1(A) × Dg with the identification ML1(A) = ML1(A) × {0}. Then U ∩
ML0(A) ' ML1(A) × Dg∗, where Dg∗ = Dg r {0}. We denote the corresponding inclusion by
i : ML1(A) × Dg∗ ↪→ ML0(A). For a given γ ∈ H∗(ML1(A),Z), define the element µεL0/L1

(γ) ∈
H∗+ε·(g−1)(ML0(A),Z) as follows.

(0) For ε = 0, let p0 ∈ Dg∗. Then γ × [p0] ∈ H∗(ML1(A)) ⊗H0(Dg∗) ⊂ H∗(ML1(A) ×Dg∗),
and µ0

L0/L1
(γ) := i∗(γ × [p0]).

(1) For ε = 1, let Sg−1 ⊂ Dg∗ be a sphere of small radius. Then γ × [Sg−1] ∈ H∗(ML1(A)) ⊗
Hg−1(Dg∗) ⊂ H∗+g−1(ML1(A) × Dg∗) (this part is essentially the Gysin homomorphism).
Now define µ1

L0/L1
(γ) := i∗(γ × [Sg−1]).

Similarly, we can define the meridian map

µεLj/Lj+1
: H∗(MLj+1(A),Z) −→ H∗+ε·(g−1)(MLj (A),Z)

between layers Lj ⊃ Lj+1 with consecutive ranks.

Definition 4.2. A cycle γ ∈ Hd(M(A; Γ, G),Z) is called a meridian cycle if there exists some k ≥ 0
and

(a) a flag L0 ⊃ L1 ⊃ · · · ⊃ Lk of layers with rankLj = j, such that L0 ∩M(A; Γ, G) 6= ∅ (or
equivalently, L0 ⊂M(Ator; Γ, G)),

(b) a sequence ε1, . . . , εk ∈ {0, 1}, and
(c) a torus cycle τ ∈ Hd−(g−1)

∑k
i=1 εi

(MLk(A),Z),
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such that
γ = µε1L0/L1

◦ µε2L1/L2
◦ · · · ◦ µεkLk−1/Lk

(τ).

We call the minimum such k the depth of γ.

4.3. Poincaré polynomials for non-compact groups. Throughout this section, we assume that G =
(S1)p × Rq × F , where F is a finite abelian group, q > 0, and g := dimG = p + q. The Poincaré
polynomial of G is PG(t) = (1 + t)p × #F. For simplicity, we also set M(A) := M(A; Γ, G),
M(A′) :=M(A′; Γ, G), andM(A′′) :=M(A′′; Γ′′, G).

Theorem 4.3. The following hold:

(i) H∗(M(A),Z) is generated by meridian cycles. That is H∗(M(A),Z) = Hmerid
∗ (A(G)), and

furthermore it is torsion free.
(ii) If α is not a loop, then H∗(M(A),Z) −→ H∗(M(A′),Z) is surjective.

(iii) Let α ∈ A. Then

PM(A)(t) =

{
PM(A′)(t)− PM(A′′)(t), if α is a loop,
PM(A′)(t) + tg−1 · PM(A′′)(t), if α is not a loop.

Theorem 4.4.

PM(A)(t) = PG(t)rΓ−rA · trA(g−1) · TGA
(
PG(t)

tg−1
+ 1, 0

)
= (−tg−1)rΓ · χGA

(
−PG(t)

tg−1

)
.

5. ENUMERATION

5.1. Euler characteristic of the complement. We briefly recall the notion of Euler characteristic for
semialgebraic sets (see [10, 4] for further details). Every semialgebraic set X has a decomposition
X =

⊔N
i=1Xi such that each Xi is a semialgebraic subset that is semialgebraically homeomorphic to

the open simplex σdi = {(x1, . . . , xdi) ∈ Rdi | xi > 0,
∑
xi < 1} for some di = dimXi. The

semialgebraic Euler characteristic of X is defined by

esemi(X) :=
N∑
i=1

(−1)di .

Unlike the topological Euler characteristic etop(X) :=
∑

(−1)ibi(X), the semialgebraic Euler char-
acteristic esemi(X) is not homotopy invariant. However, if X is a manifold (without boundary), then
esemi(X) and etop(X) are related by the following formula:

esemi(X) = (−1)dimX · etop(X).

Here we assume that G is of the form G = (S1)p × Rq × F , where F is a finite abelian group. Such
a group G can be realized as a semialgebraic set, with the group operations defined by C∞ semialge-
braic maps. Hence subsets defined by using group operations are always semialgebraic sets. The Euler
characteristics of G are easily computed as

esemi(G) =

{
0, if p > 0,

(−1)p+q ·#F, if p = 0,

etop(G) =

{
0, if p > 0,

#F, if p = 0.

Let A be a finite list of elements in a finitely generated abelian group Γ. The space M(A; Γ, G) is a
semialgebraic set, and, if it is not empty, it is also a manifold (without boundary) of dimM(A; Γ, G) =
rΓ · dimG. The G-Tutte polynomial can be used to compute the Euler characteristic ofM(A; Γ, G).
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Theorem 5.1. Let G be an abelian Lie group with finitely many connected components, and let g =
dimG. Then,

esemi(M(A; Γ, G)) = χGA(esemi(G)),

or equivalently,
etop(M(A; Γ, G)) = (−1)g·rΓ · χGA ((−1)g · etop(G)) .

5.2. Point counting in complements. In the case that G is finite, the complementM(A; Γ, G) is also
a finite set. Every finite set can be considered as a 0-dimensional semialgebraic set whose Euler charac-
teristic is equal to its cardinality. The following theorem immediately follows from Theorem 5.1.

Theorem 5.2. Let A be a finite list of elements in a finitely generated abelian group Γ, and let G be a
finite abelian group. Then

#M(A; Γ, G) = χGA(#G).

Theorem 5.3. (See §2.2 for notation.) Let A be a finite list of elements in Γ = Z`, and let k be a divisor
of ρA. The k-constituent fk(t) of the characteristic quasi-polynomial χquasi

A (q) is equal to

fk(t) = χ
Z/kZ
A (t).

Corollary 5.4. The last constituent fρA(t) of the characteristic quasi-polynomial χquasi
A (q) is equal to

both χC×
A (t) and χarith

A (t).

5.3. Examples: root systems. Let Φ be an irreducible root system of rank `, and let Γ = Z · Φ
be the root lattice of Φ. Consider the list AΦ := Φ+ ⊂ Γ of positive roots. The characteristic
quasi-polynomial χquasi

AΦ
(q) was computed by Suter [29] and Kamiya-Takemura-Terao [19]. Using

formula (2.2), or Theorem 4.4, the Poincaré polynomial for the corresponding toric arrangement is
PM(AΦ;Γ,C×)(t) = (−t)`χC×

AΦ

(
−1+t

t

)
. We only show exceptional cases.

PM(AE6
;Γ,C×)(t) =1 + 42t+ 705t2 + 6020t3 + 27459t4 + 63378t5 + 58555t6

PM(AE7
;Γ,C×)(t) =1 + 70t+ 2016t2 + 30800t3 + 268289t4 + 1328670t5

+ 3479734t6 + 3842020t7

PM(AE8
;Γ,C×)(t) =1 + 128t+ 6888t2 + 202496t3 + 3539578t4 + 37527168t5

+ 235845616t6 + 818120000t7 + 1313187309t8

PM(AF4
;Γ,C×)(t) =1 + 28t+ 286t2 + 1260t3 + 2153t4

PM(AG2
;Γ,C×)(t) =1 + 8t+ 19t2
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